Polyomavirus BK
Non coding region
genesig® Advanced Kit
150 tests
Polyomavirus is the sole genus of viruses within the family Polyomaviridae. Polyomaviruses are DNA-based (double-stranded DNA,~5000 base pairs, circular genome), small (40-50 nanometers in diameter), and icosahedral in shape, and do not have a lipoprotein envelope. They are potentially oncogenic (tumor-causing); they often persist as latent infections in a host without causing disease, but may produce tumors in a host of a different species, or a host with an ineffective immune system. The name polyoma refers to the viruses’ ability to produce multiple (poly-) tumors (-oma).

Until recently, the family of Polyomaviridae contained only one genus (Polyomavirus). The recent expansion of known Polyomaviruses called for reclassification of the family into 3 genera: Orthopolyomavirus, Wukipolyomavirus, and Avipolyomavirus.

There are four polyomaviruses found in humans: JC virus, which can infect the respiratory system, kidneys, or brain (sometimes causing the fatal progressive multifocal leukoencephalopathy in the latter case), and BK virus, which produces a mild respiratory infection and can affect the kidneys of immunosuppressed transplant patients. Both viruses are very widespread: approximately 80 percent of the adult population in the United States have antibodies to BK and JC.

KI (Karolinska Institute) and WU (Washington University) viruses are recently discovered polyomaviruses. They are closely related to each other and have been isolated from respiratory secretions. These viruses, discovered almost simultaneously in 2007, were the first of an expanding group of polyomaviruses found to naturally infect humans beyond JCV and BKV.

In Jan 2008, a new species, Merkel cell polyoma virus, was described as the likely causative agent of Merkel skin cancer.

All the polyomaviruses are highly common childhood and young adult infections. Most of these infections appear to cause little or no symptoms. These viruses are probably lifelong persistent among almost all adults. Diseases caused by human polyomavirus infections are most common among persons who become immunosuppressed by AIDS, old age or after transplantation.

For nearly 40 years, only two polyomaviruses were known to infect humans. Genome sequencing technologies have recently discovered seven additional human polyomaviruses, including one causing most cases of Merkel cell carcinoma and another associated with transplant-associated dysplasia (TSV), that are natural infections of humans. Discovery of these polyomaviruses and other new—but previously undiscovered—viruses may provide clues to the aetiology for human diseases.
Specificity

The Primerdesign genesig Kit for Polyomavirus BK (BKV) genomes is designed for the in vitro quantification of BKV genomes. The kit is designed to have the broadest detection profile possible whilst remaining specific to the BKV genome.

The primers and probe sequences in this kit have 100% homology with a broad range of BKV sequences based on a comprehensive bioinformatics analysis.

The primers have 100% homology with all reference sequences included in the NCBI database therefore have a very broad quantification profile. The primers have a low homology to the type JC stain and are not predicted to detect on JC isolates.

If you require further information, or have a specific question about the detection profile of this kit then please send an e.mail to enquiry@primerdesign.co.uk and our bioinformatics team will answer your question.
Kit contents

- BKV specific primer/probe mix (150 reactions BROWN)
 FAM labelled
- BKV positive control template (for Standard curve RED)
- Internal extraction control primer/probe mix (150 reactions BROWN)
 VIC labelled as standard
- Internal extraction control DNA (150 reactions BLUE)
- Endogenous control primer/probe mix (150 reactions BROWN)
 FAM labelled
- RNase/DNase free water (WHITE)
 for resuspension of primer/probe mixes
- Template preparation buffer (YELLOW)
 for resuspension of internal control template, positive control template and standard curve preparation

Reagents and equipment to be supplied by the user

Real-time PCR Instrument

DNA extraction kit
This kit is recommended for use with genesig Easy DNA/RNA extraction kit. However, it is designed to work well with all processes that yield high quality DNA with minimal PCR inhibitors.

oasig™ lyophilised or Precision® PLUS 2X qPCR Master Mix
This kit is intended for use with oasig or PrecisionPLUS 2X qPCR Master Mix.

Pipettors and Tips

Vortex and centrifuge

Thin walled 1.5 ml PCR reaction tubes
Kit storage and stability
This kit is stable at room temperature but should be stored at -20°C on arrival. Once the lyophilised components have been resuspended they should not be exposed to temperatures above -20°C for longer than 30 minutes at a time and unnecessary repeated freeze/thawing should be avoided. The kit is stable for six months from the date of resuspension under these circumstances.
If a standard curve dilution series is prepared this can be stored frozen for an extended period. If you see any degradation in this serial dilution a fresh standard curve can be prepared from the positive control.
Primerdesign does not recommend using the kit after the expiry date stated on the pack.

Suitable sample material
All kinds of sample material suited for PCR amplification can be used. Please ensure the samples are suitable in terms of purity, concentration, and DNA integrity (An internal PCR control is supplied to test for non specific PCR inhibitors). Always run at least one negative control with the samples. To prepare a negative-control, replace the template DNA sample with RNase/DNase free water.

Dynamic range of test
Under optimal PCR conditions genesig BKV detection kits have very high priming efficiencies of >95% and can detect less than 100 copies of target template.

Notices and disclaimers
This product is developed, designed and sold for research purposes only. It is not intended for human diagnostic or drug purposes or to be administered to humans unless clearly expressed for that purpose by the Food and Drug Administration in the USA or the appropriate regulatory authorities in the country of use. During the warranty period Primerdesign genesig detection kits allow precise and reproducible data recovery combined with excellent sensitivity. For data obtained by violation to the general GLP guidelines and the manufacturer’s recommendations the right to claim under guarantee is expired. PCR is a proprietary technology covered by several US and foreign patents. These patents are owned by Roche Molecular Systems Inc. and have been sub-licensed by PE Corporation in certain fields. Depending on your specific application you may need a license from Roche or PE to practice PCR. Additional information on purchasing licenses to practice the PCR process may be obtained by contacting the Director of Licensing at Roche Molecular Systems, 1145 Atlantic Avenue, Alameda, CA 94501 or Applied Biosystems business group of the Applera Corporation, 850 Lincoln Centre Drive, Foster City, CA 94404. In addition, the 5’ nuclease assay and other homogeneous amplification methods used in connection with the PCR process may be covered by U.S. Patents 5,210,015 and 5,487,972, owned by Roche Molecular Systems, Inc. and by U.S. Patent 5,538,848, owned by The Perkin-Elmer Corporation.

Trademarks
Primerdesign™ is a trademark of Primerdesign Ltd.
genesis® is a registered trademark of Primerdesign Ltd.
The PCR process is covered by US Patents 4,683,195, and 4,683,202 and foreign equivalents owned by Hoffmann-La Roche AG. BI, ABI PRISM® GeneAmp® and MicroAmp® are registered trademarks of the Applera Genomics (Applied Biosystems Corporation). BIOMEK® is a registered trademark of Beckman Instruments, Inc.; iCycler™ is a registered trademark of Bio-Rad Laboratories, Rotor-Gene is a trademark of Corbett Research, LightCycler™ is a registered trademark of the Idaho Technology Inc. GeneAmp®, TaqMan® and AmpITaqGold® are registered trademarks of Roche Molecular Systems, Inc.. The purchase of the Primerdesign™ reagents cannot be construed as an authorization or implicit license to practice PCR under any patents held by Hoffmann-LaRoche Inc.
Principles of the test

Real-time PCR
A BKV specific primer and probe mix is provided and this can be detected through the FAM channel.

The primer and probe mix provided exploits the so-called TaqMan® principle. During PCR amplification, forward and reverse primers hybridize to the BKV DNA. A fluorogenic probe is included in the same reaction mixture which consists of a DNA probe labeled with a 5'-dye and a 3'-quencher. During PCR amplification, the probe is cleaved and the reporter dye and quencher are separated. The resulting increase in fluorescence can be detected on a range of qPCR platforms.

Positive control
For copy number determination and as a positive control for the PCR set up, the kit contains a positive control template. This can be used to generate a standard curve of BKV copy number / Cq value. Alternatively the positive control can be used at a single dilution where full quantitative analysis of the samples is not required. Each time the kit is used, at least one positive control reaction must be included in the run. A positive result indicates that the primers and probes for detecting the target BKV gene worked properly in that particular experimental scenario. If a negative result is obtained the test results are invalid and must be repeated. Care should be taken to ensure that the positive control does not contaminate any other kit component which would lead to false-positive results. This can be achieved by handling this component in a Post PCR environment. Care should also be taken to avoid cross-contamination of other samples when adding the positive control to the run. This can be avoided by sealing all other samples and negative controls before pipetting the positive control into the positive control well.

Negative control
To validate any positive findings a negative control reaction should be included every time the kit is used. For this reaction the RNase/DNase free water should be used instead of template. A negative result indicates that the reagents have not become contaminated while setting up the run.
Internal DNA extraction control

When performing DNA extraction, it is often advantageous to have an exogenous source of DNA template that is spiked into the lysis buffer. This control DNA is then co-purified with the sample DNA and can be detected as a positive control for the extraction process. Successful co-purification and qPCR for the control DNA also indicates that PCR inhibitors are not present at a high concentration.

A separate primer and probe mix are supplied with this kit to detect the exogenous DNA using qPCR. The primers are present at PCR limiting concentrations which allows multiplexing with the target sequence primers. Amplification of the control DNA does not interfere with detection of the BKV target DNA even when present at low copy number. The Internal control is detected through the VIC channel and gives a Cq value of 28+/-3.

Endogenous control

To confirm extraction of a valid biological template, a primer and probe mix is included to detect an endogenous gene. Detection of the endogenous control is through the FAM channel and it is NOT therefore possible to perform a multiplex with the BKV primers. A poor endogenous control signal may indicate that the sample did not contain sufficient biological material.
Resuspension protocol

To minimize the risk of contamination with foreign DNA, we recommend that all pipetting be performed in a PCR clean environment. Ideally this would be a designated PCR lab or PCR cabinet. Filter tips are recommended for all pipetting steps.

1. **Pulse-spin each tube in a centrifuge before opening.**
 This will ensure lyophilised primer and probe mix is in the base of the tube and is not spilt upon opening the tube.

2. **Resuspend the primer/probe mixes in the RNase/DNase free water supplied, according to the table below:**
 To ensure complete resuspension, vortex each tube thoroughly.

<table>
<thead>
<tr>
<th>Component - resuspend in water</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-PCR pack</td>
<td></td>
</tr>
<tr>
<td>BKV primer/probe mix (BROWN)</td>
<td>165 µl</td>
</tr>
<tr>
<td>Internal extraction control primer/probe mix (BROWN)</td>
<td>165 µl</td>
</tr>
<tr>
<td>Endogenous control primer/probe mix (BROWN)</td>
<td>165 µl</td>
</tr>
</tbody>
</table>

3. **Resuspend the internal control template and positive control template in the template preparation buffer supplied, according to the table below:**
 To ensure complete resuspension, vortex each tube thoroughly.

<table>
<thead>
<tr>
<th>Component - resuspend in template preparation buffer</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-PCR heat-sealed foil</td>
<td></td>
</tr>
<tr>
<td>Internal extraction control DNA (BLUE)</td>
<td>600 µl</td>
</tr>
<tr>
<td>Post-PCR heat-sealed foil</td>
<td></td>
</tr>
<tr>
<td>BKV Positive Control Template (RED) *</td>
<td>500 µl</td>
</tr>
</tbody>
</table>

* This component contains high copy number template and is a VERY significant contamination risk. It must be opened and handled in a separate laboratory environment, away from the other components.

DNA extraction

The internal extraction control DNA can be added either to the DNA lysis/extraction buffer or to the DNA sample once it has been resuspended in lysis buffer.

DO NOT add the internal extraction control DNA directly to the unprocessed biological sample as this will lead to degradation and a loss in signal.

1. **Add 4µl of the Internal extraction control DNA (BLUE) to each sample in DNA lysis/extraction buffer per sample.**

2. **Complete DNA extraction according to the manufacturers protocols.**
qPCR detection protocol

1. For each DNA sample prepare a reaction mix according to the table below:
 Include sufficient reactions for positive and negative controls.

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>oasig or PrecisionPLUS 2X qPCR Master Mix</td>
<td>10 µl</td>
</tr>
<tr>
<td>BKV primer/probe mix (BROWN)</td>
<td>1 µl</td>
</tr>
<tr>
<td>Internal extraction control primer/probe mix (BROWN)</td>
<td>1 µl</td>
</tr>
<tr>
<td>RNase/DNase free water (WHITE)</td>
<td>3 µl</td>
</tr>
<tr>
<td>Final Volume</td>
<td>15 µl</td>
</tr>
</tbody>
</table>

2. For each DNA sample prepare an endogenous control reaction according to the table below (Optional):
 This control reaction will provide useful information regarding the quality of the biological sample.

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>oasig or PrecisionPLUS 2X qPCR Master Mix</td>
<td>10 µl</td>
</tr>
<tr>
<td>Endogenous control primer/probe mix (BROWN)</td>
<td>1 µl</td>
</tr>
<tr>
<td>RNase/DNase free water (WHITE)</td>
<td>4 µl</td>
</tr>
<tr>
<td>Final Volume</td>
<td>15 µl</td>
</tr>
</tbody>
</table>

3. Pipette 15µl of each mix into individual wells according to your qPCR experimental plate set up.

4. Prepare sample DNA templates for each of your samples.

5. Pipette 5µl of DNA template into each well, according to your experimental plate set up.
 For negative control wells use 5µl of RNase/DNase free water. The final volume in each well is 20µl.

6. If a standard curve is included for quantitative analysis, prepare a reaction mix according to the table below:

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>oasig or PrecisionPLUS 2X qPCR Master Mix</td>
<td>10 µl</td>
</tr>
<tr>
<td>BKV primer/probe mix (BROWN)</td>
<td>1 µl</td>
</tr>
<tr>
<td>RNase/DNase free water (WHITE)</td>
<td>4 µl</td>
</tr>
<tr>
<td>Final Volume</td>
<td>15 µl</td>
</tr>
</tbody>
</table>
7. **Preparation of standard curve dilution series.**

1) Pipette 90µl of template preparation buffer into 5 tubes and label 2-6
2) Pipette 10µl of Positive Control Template (RED) into tube 2
3) Vortex thoroughly
4) Change pipette tip and pipette 10µl from tube 2 into tube 3
5) Vortex thoroughly

Repeat steps 4 and 5 to complete the dilution series

<table>
<thead>
<tr>
<th>Standard Curve</th>
<th>Copy Number *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube 1 Positive control (RED)</td>
<td>2 x 10⁵ per µl</td>
</tr>
<tr>
<td>Tube 2</td>
<td>2 x 10⁴ per µl</td>
</tr>
<tr>
<td>Tube 3</td>
<td>2 x 10³ per µl</td>
</tr>
<tr>
<td>Tube 4</td>
<td>2 x 10² per µl</td>
</tr>
<tr>
<td>Tube 5</td>
<td>20 per µl</td>
</tr>
<tr>
<td>Tube 6</td>
<td>2 per µl</td>
</tr>
</tbody>
</table>

*The quantitative results produced by the genesig BKV kit can be converted to International Units by multiplying copy numbers by 1.12. This conversion factor was developed using RNA/DNA extracted (where applicable) from the WHO International Standard for BKV.

8. **Pipette 5µl of standard template into each well for the standard curve according to your experimental plate set up.**
The final volume in each well is 20µl.

qPCR amplification protocol

Amplification conditions using oasis or PrecisionPLUS 2X qPCR Master Mix.

<table>
<thead>
<tr>
<th>Step</th>
<th>Time</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enzyme activation</td>
<td>2 min</td>
<td>95 °C</td>
</tr>
<tr>
<td>Denaturation</td>
<td>10 s</td>
<td>95 °C</td>
</tr>
<tr>
<td>DATA COLLECTION *</td>
<td>60 s</td>
<td>60 °C</td>
</tr>
</tbody>
</table>

* Fluorogenic data should be collected during this step through the FAM and VIC channels
Interpretation of results

<table>
<thead>
<tr>
<th>Target (FAM)</th>
<th>Internal control (VIC)</th>
<th>Positive control</th>
<th>Negative control</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 30</td>
<td>+ / -</td>
<td>+</td>
<td>-</td>
<td>POSITIVE QUANTITATIVE RESULT calculate copy number</td>
</tr>
<tr>
<td>> 30</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>POSITIVE QUANTITATIVE RESULT calculate copy number</td>
</tr>
<tr>
<td>> 30</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>POSITIVE QUALITATIVE RESULT do not report copy number as this may be due to poor sample extraction</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>NEGATIVE RESULT</td>
</tr>
</tbody>
</table>

+ / - + / - + ≤ 35 EXPERTIMENT FAILED due to test contamination
+ / - + / - + > 35 *
- - + - SAMPLE PREPARATION FAILED
+ / - + / - - + / - EXPERTIMENT FAILED

Positive control template (RED) is expected to amplify between Cq 16 and 23. Failure to satisfy this quality control criterion is a strong indication that the experiment has been compromised.

*Where the test sample is positive and the negative control is positive with a Cq > 35, the sample must be reinterpreted based on the relative signal strength of the two results:

SAMPLE POSITIVE

\[\Delta Cq > 5 \]

If the sample amplifies > 5 Cq earlier than the negative control then the sample should be reinterpreted (via the table above) with the negative control verified as negative.

INCONCLUSIVE

\[\Delta Cq < 5 \]

If the sample amplifies < 5 Cq earlier than the negative control then the positive sample result is invalidated and the result should be determined inconclusive due to test contamination. The test for this sample should be repeated.
Internal PCR control

The Cq value obtained with the internal control will vary significantly depending on the extraction efficiency, the quantity of DNA added to the PCR reaction and the individual machine settings. Cq values of 28±3 are within the normal range. When amplifying a BKV sample with a high genome copy number, the internal extraction control may not produce an amplification plot. This does not invalidate the test and should be interpreted as a positive experimental result.

Endogenous control

The signal obtained from the endogenous control primer and probe set will vary according to the amount of biological material present in a given sample. An early signal indicates the presence of a good yield of biological material. A late signal suggests that little biological material is present in the sample.