Coxiella burnetii
DNA gyrase subunit A

genesig® Advanced Kit

150 tests
Coxiella Burnetii is a Gram-negative non-sporulating, rod-like intracellular bacterium that is responsible for human Q fever. The pathogen can be considered as a potential agent for bioterrorism as it is highly infectious and resistant to heat and drying. The genome is approximately 2 Mb long and is circular in conformation. C. burnetii possesses a lipopolysaccharide structure that is important in virulence and responsible for antigenic phase variation, analogous to the smooth-rough LPS variation seen in enteric Gram-negative microorganisms. Bacterial isolates from eukaryotic hosts have a phase I (smooth) LPS, which can protect the microorganism from microbicidal activities of the host.

Coxiella burnetii can induce abortion in domestic mammals (cat, dog, rabbit) and ruminants, and these animals represent their main reservoir. The danger posed by Coxiella is that they can be excreted by animals exhibiting no apparent clinical signs of the disease, whether following natural infection or because the animals have been vaccinated with an ineffective vaccine. This can then be transmitted to humans via inhalation or tick bites. After initial infection at the site of entry, the microorganism is engulfed by resident macrophages and transported systemically, causing histopathological changes in the lungs, liver, and spleen. After uptake by host cells, the acidic conditions within the phagolysosome allow the bacteria to grow. Eventually, proliferation within the phagolysosome leads to rupture of the host cell and infection of a new population of host cells.

The incubation period can vary from a few days to several weeks and the severity of infection varies in direct proportion to the infectious dose in normal individuals. There are no characteristic symptoms of Q fever, but fever, severe headache, and chills tend to be prevalent. Fever usually peaks at 40°C and lasts for approximately 13 days. Fatigue and sweats also frequently occur. Pneumonia is a common clinical presentation. Cough, nausea, vomiting, myalgia, arthralgia, chest pain, hepatitis, and occasionally, splenomegaly, osteomyelitis, and meningoencephalitis are symptoms that are also associated with acute Q fever. Fatalities in cases of acute Q fever are rare, with fewer than 1% of cases resulting in death. Children develop symptomatic disease less frequently than adults.
Specificity

The Primerdesign genesig Kit for Coxiella burnetii (C. burnetii) genomes is designed for the in vitro quantification of C. burnetii genomes. The kit is designed to have a broad detection profile. Specifically, the primers represent 100% homology with over 95% of the NCBI database reference sequences available at the time of design.

The dynamics of genetic variation means that new sequence information may become available after the initial design. Primerdesign periodically reviews the detection profiles of our kits and when required releases new versions.

If you require further information, or have a specific question about the detection profile of this kit then please send an e.mail to enquiry@primerdesign.co.uk and our bioinformatics team will answer your question.
Kit contents

- C. burnetii specific primer/probe mix (150 reactions **BROWN**) FAM labelled
- C. burnetii positive control template (for Standard curve **RED**)
- Internal extraction control primer/probe mix (150 reactions **BROWN**) VIC labelled as standard
- Internal extraction control DNA (150 reactions **BLUE**)
- Endogenous control primer/probe mix (150 reactions **BROWN**) FAM labelled
- RNase/DNase free water (**WHITE**) for resuspension of primer/probe mixes
- Template preparation buffer (**YELLOW**) for resuspension of internal control template, positive control template and standard curve preparation

Reagents and equipment to be supplied by the user

Real-time PCR Instrument

Extraction kit
This kit is recommended for use with genesig Easy DNA/RNA extraction kit. However, it is designed to work well with all processes that yield high quality RNA and DNA with minimal PCR inhibitors.

oasig™ lyophilised or Precision® PLUS 2X qPCR Master Mix
This kit is intended for use with oasig or PrecisionPLUS2X qPCR Master Mix.

Pipettors and Tips

Vortex and centrifuge

Thin walled 1.5 ml PCR reaction tubes
Kit storage and stability
This kit is stable at room temperature but should be stored at -20°C on arrival. Once the
dry-shipped components have been resuspended they should not be exposed to temperatures
above -20°C for longer than 30 minutes at a time and unnecessary repeated freeze/thawing
should be avoided. The kit is stable for six months from the date of resuspension under these
circumstances.
If a standard curve dilution series is prepared this can be stored frozen for an extended
period. If you see any degradation in this serial dilution a fresh standard curve can be
prepared from the positive control.
Primerdesign does not recommend using the kit after the expiry date stated on the pack.

Suitable sample material
All kinds of sample material suited for PCR amplification can be used. Please ensure the
samples are suitable in terms of purity, concentration, and DNA integrity (An internal PCR
control is supplied to test for non specific PCR inhibitors). Always run at least one negative
control with the samples. To prepare a negative-control, replace the template DNA sample
with RNase/DNase free water.

Dynamic range of test
Under optimal PCR conditions genesig C.burnetii detection kits have very high priming
 efficiencies of >95% and can detect less than 100 copies of target template.

Notices and disclaimers
This product is developed, designed and sold for research purposes only. It is not intended for human diagnostic or drug purposes or
to be administered to humans unless clearly expressed for that purpose by the Food and Drug Administration in the USA or the
appropriate regulatory authorities in the country of use. During the warranty period Primerdesign genesig detection kits allow precise
and reproducible data recovery combined with excellent sensitivity. For data obtained by violation to the general GLP guidelines and
the manufacturer’s recommendations the right to claim under guarantee is expired. PCR is a proprietary technology covered by
several US and foreign patents. These patents are owned by Roche Molecular Systems Inc. and have been sub-licensed by PE
Corporation in certain fields. Depending on your specific application you may need a license from Roche or PE to practice PCR.
Additional information on purchasing licenses to practice the PCR process may be obtained by contacting the Director of Licensing at
Roche Molecular Systems, 1145 Atlantic Avenue, Alameda, CA 94501 or Applied Biosystems business group of the Applera
Corporation, 850 Lincoln Centre Drive, Foster City, CA 94404. In addition, the 5' nuclease assay and other homogeneous
amplification methods used in connection with the PCR process may be covered by U.S. Patents 5,210,015 and 5,487,972, owned by
Roche Molecular Systems, Inc and by U.S. Patent 5,538,846, owned by The Perkin-Elmer Corporation.

Trademarks
Primerdesign™ is a trademark of Primerdesign Ltd.
genesig® is a registered trademark of Primerdesign Ltd.
The PCR process is covered by US Patents 4,683,195, and 4,683,202 and foreign equivalents owned by Hoffmann-La Roche AG. B1, ABI PRISM® GeneAmp® and MicroAmp® are registered trademarks of the Applera Genomics (Applied Biosystems Corporation).
BIOMEK® is a registered trademark of Beckman Instruments, Inc.; iCycler™ is a registered trademark of Bio-Rad Laboratories,
Rotor-Gene is a trademark of Corbett Research. LightCycler® is a registered trademark of the Idaho Technology Inc. GeneAmp®,
TaqMan® and AmpliTaqGold® are registered trademarks of Roche Molecular Systems, Inc., The purchase of the Primerdesign™
reagents cannot be construed as an authorization or implicit license to practice PCR under any patents held by Hoffmann-LaRoche
Inc.
Principles of the test

Real-time PCR
A C. burnetii specific primer and probe mix is provided and this can be detected through the FAM channel.

The primer and probe mix provided exploits the so-called TaqMan® principle. During PCR amplification, forward and reverse primers hybridize to the C. burnetii DNA. A fluorogenic probe is included in the same reaction mixture which consists of a DNA probe labeled with a 5`-dye and a 3`-quencher. During PCR amplification, the probe is cleaved and the reporter dye and quencher are separated. The resulting increase in fluorescence can be detected on a range of qPCR platforms.

Positive control
For copy number determination and as a positive control for the PCR set up, the kit contains a positive control template. This can be used to generate a standard curve of C. burnetii copy number / Cq value. Alternatively the positive control can be used at a single dilution where full quantitative analysis of the samples is not required. Each time the kit is used, at least one positive control reaction must be included in the run. A positive result indicates that the primers and probes for detecting the target C. burnetii gene worked properly in that particular experimental scenario. If a negative result is obtained the test results are invalid and must be repeated. Care should be taken to ensure that the positive control does not contaminate any other kit component which would lead to false-positive results. This can be achieved by handling this component in a Post PCR environment. Care should also be taken to avoid cross-contamination of other samples when adding the positive control to the run. This can be avoided by sealing all other samples and negative controls before pipetting the positive control into the positive control well.

Negative control
To validate any positive findings a negative control reaction should be included every time the kit is used. For this reaction the RNase/DNase free water should be used instead of template. A negative result indicates that the reagents have not become contaminated while setting up the run.

C. burnetii DNA is known to be highly prevalent within the air and environment generally and the negative control may therefore give a late positive signal due to environmental contamination. The interpretation of results section of this handbook gives guidance on how to interpret results where environmental contamination is evident.
Internal DNA extraction control

When performing DNA extraction, it is often advantageous to have an exogenous source of DNA template that is spiked into the lysis buffer. This control DNA is then co-purified with the sample DNA and can be detected as a positive control for the extraction process. Successful co-purification and qPCR for the control DNA also indicates that PCR inhibitors are not present at a high concentration.

A separate primer and probe mix are supplied with this kit to detect the exogenous DNA using qPCR. The primers are present at PCR limiting concentrations which allows multiplexing with the target sequence primers. Amplification of the control DNA does not interfere with detection of the C. burnetii target DNA even when present at low copy number. The Internal control is detected through the VIC channel and gives a Cq value of 28+/-3.

Endogenous control

To confirm extraction of a valid biological template, a primer and probe mix is included to detect an endogenous gene. Detection of the endogenous control is through the FAM channel and it is NOT therefore possible to perform a multiplex with the C. burnetii primers. A poor endogenous control signal may indicate that the sample did not contain sufficient biological material.
Resuspension protocol
To minimize the risk of contamination with foreign DNA, we recommend that all pipetting be performed in a PCR clean environment. Ideally this would be a designated PCR lab or PCR cabinet. Filter tips are recommended for all pipetting steps.

1. **Pulse-spin each tube in a centrifuge before opening.**
 This will ensure lyophilised primer and probe mix is in the base of the tube and is not spilt upon opening the tube.

2. **Resuspend the primer/probe mixes in the RNase/DNase free water supplied, according to the table below:**
 To ensure complete resuspension, vortex each tube thoroughly.

<table>
<thead>
<tr>
<th>Component - resuspend in water</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-PCR pack</td>
<td></td>
</tr>
<tr>
<td>C.burnetii primer/probe mix (BROWN)</td>
<td>165 µl</td>
</tr>
<tr>
<td>Internal extraction control primer/probe mix (BROWN)</td>
<td>165 µl</td>
</tr>
<tr>
<td>Endogenous control primer/probe mix (BROWN)</td>
<td>165 µl</td>
</tr>
</tbody>
</table>

3. **Resuspend the internal control template and positive control template in the template preparation buffer supplied, according to the table below:**
 To ensure complete resuspension, vortex each tube thoroughly.

<table>
<thead>
<tr>
<th>Component - resuspend in template preparation buffer</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-PCR heat-sealed foil</td>
<td></td>
</tr>
<tr>
<td>Internal extraction control DNA (BLUE)</td>
<td>600 µl</td>
</tr>
<tr>
<td>Post-PCR heat-sealed foil</td>
<td></td>
</tr>
<tr>
<td>C.burnetii Positive Control Template (RED) *</td>
<td>500 µl</td>
</tr>
</tbody>
</table>

* This component contains high copy number template and is a VERY significant contamination risk. It must be opened and handled in a separate laboratory environment, away from the other components.

DNA extraction
The internal extraction control DNA can be added either to the DNA lysis/extraction buffer or to the DNA sample once it has been resuspended in lysis buffer.

DO NOT add the internal extraction control DNA directly to the unprocessed biological sample as this will lead to degradation and a loss in signal.

1. **Add 4µl of the Internal extraction control DNA (BLUE) to each sample in DNA lysis/extraction buffer per sample.**

2. **Complete DNA extraction according to the manufacturers protocols.**
qPCR detection protocol

1. **For each DNA sample prepare a reaction mix according to the table below:**
 Include sufficient reactions for positive and negative controls.

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>oasig or PrecisionPLUS 2X qPCR Master Mix</td>
<td>10 µl</td>
</tr>
<tr>
<td>C.burnetii primer/probe mix (BROWN)</td>
<td>1 µl</td>
</tr>
<tr>
<td>Internal extraction control primer/probe mix (BROWN)</td>
<td>1 µl</td>
</tr>
<tr>
<td>RNase/DNase free water (WHITE)</td>
<td>3 µl</td>
</tr>
<tr>
<td>Final Volume</td>
<td>15 µl</td>
</tr>
</tbody>
</table>

2. **For each DNA sample prepare an endogenous control reaction according to the table below (Optional):**
 This control reaction will provide useful information regarding the quality of the biological sample.

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>oasig or PrecisionPLUS 2X qPCR Master Mix</td>
<td>10 µl</td>
</tr>
<tr>
<td>Endogenous control primer/probe mix (BROWN)</td>
<td>1 µl</td>
</tr>
<tr>
<td>RNase/DNase free water (WHITE)</td>
<td>4 µl</td>
</tr>
<tr>
<td>Final Volume</td>
<td>15 µl</td>
</tr>
</tbody>
</table>

3. **Pipette 15µl of each mix into individual wells according to your qPCR experimental plate set up.**

4. **Prepare sample DNA templates for each of your samples.**

5. **Pipette 5µl of DNA template into each well, according to your experimental plate set up.**
 For negative control wells use 5µl of RNase/DNase free water. The final volume in each well is 20µl.

6. **If a standard curve is included for quantitative analysis, prepare a reaction mix according to the table below:**

<table>
<thead>
<tr>
<th>Component</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>oasig or PrecisionPLUS 2X qPCR Master Mix</td>
<td>10 µl</td>
</tr>
<tr>
<td>C.burnetii primer/probe mix (BROWN)</td>
<td>1 µl</td>
</tr>
<tr>
<td>RNase/DNase free water (WHITE)</td>
<td>4 µl</td>
</tr>
<tr>
<td>Final Volume</td>
<td>15 µl</td>
</tr>
</tbody>
</table>
7. **Preparation of standard curve dilution series.**

1) Pipette 90µl of template preparation buffer into 5 tubes and label 2-6
2) Pipette 10µl of Positive Control Template (RED) into tube 2
3) Vortex thoroughly
4) Change pipette tip and pipette 10µl from tube 2 into tube 3
5) Vortex thoroughly

Repeat steps 4 and 5 to complete the dilution series

<table>
<thead>
<tr>
<th>Standard Curve</th>
<th>Copy Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tube 1 Positive control (RED)</td>
<td>2 x 10^6 per µl</td>
</tr>
<tr>
<td>Tube 2</td>
<td>2 x 10^5 per µl</td>
</tr>
<tr>
<td>Tube 3</td>
<td>2 x 10^4 per µl</td>
</tr>
<tr>
<td>Tube 4</td>
<td>2 x 10^3 per µl</td>
</tr>
<tr>
<td>Tube 5</td>
<td>20 per µl</td>
</tr>
<tr>
<td>Tube 6</td>
<td>2 per µl</td>
</tr>
</tbody>
</table>

8. **Pipette 5µl of standard template into each well for the standard curve according to your experimental plate set up.**
The final volume in each well is 20µl.

qPCR amplification protocol

Amplification conditions using oasisig or PrecisionPLUS 2X qPCR Master Mix.

<table>
<thead>
<tr>
<th>Step</th>
<th>Time</th>
<th>Temp</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enzyme activation</td>
<td>2 min</td>
<td>95 °C</td>
</tr>
<tr>
<td>Denaturation</td>
<td>10 s</td>
<td>95 °C</td>
</tr>
<tr>
<td>DATA COLLECTION *</td>
<td>60 s</td>
<td>60 °C</td>
</tr>
</tbody>
</table>

* Fluorogenic data should be collected during this step through the FAM and VIC channels
Interpretation of results

<table>
<thead>
<tr>
<th>Target (FAM)</th>
<th>Internal control (VIC)</th>
<th>Positive control</th>
<th>Negative control</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 30</td>
<td>+ / -</td>
<td>+</td>
<td>-</td>
<td>POSITIVE QUANTITATIVE RESULT calculate copy number</td>
</tr>
<tr>
<td>> 30</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>POSITIVE QUANTITATIVE RESULT calculate copy number</td>
</tr>
<tr>
<td>> 30</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>POSITIVE QUALITATIVE RESULT do not report copy number as this may be due to poor sample extraction</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>NEGATIVE RESULT</td>
</tr>
<tr>
<td></td>
<td>+ / -</td>
<td>+ / -</td>
<td>≤ 35</td>
<td>EXPERIMENT FAILED due to test contamination</td>
</tr>
<tr>
<td></td>
<td>+ / -</td>
<td>+ / -</td>
<td>> 35</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>SAMPLE PREPARATION FAILED</td>
</tr>
<tr>
<td></td>
<td>+ / -</td>
<td>+ / -</td>
<td>+ / -</td>
<td>EXPERIMENT FAILED</td>
</tr>
</tbody>
</table>

Positive control template (RED) is expected to amplify between Cq 16 and 23. Failure to satisfy this quality control criterion is a strong indication that the experiment has been compromised.

*Where the test sample is positive and the negative control is positive with a Cq > 35, the sample must be reinterpreted based on the relative signal strength of the two results:

SAMPLE POSITIVE

If the sample amplifies > 3 Cq earlier than the negative control then the sample should be reinterpreted (via the table above) with the negative control verified as negative.

SAMPLE NEGATIVE

If the sample amplifies < 3 Cq earlier than the negative control then the positive sample result is invalidated and a negative call is the correct result.
Internal PCR control
The Cq value obtained with the internal control will vary significantly depending on the extraction efficiency, the quantity of DNA added to the PCR reaction and the individual machine settings. Cq values of 28±3 are within the normal range. When amplifying a C. burnetii sample with a high genome copy number, the internal extraction control may not produce an amplification plot. This does not invalidate the test and should be interpreted as a positive experimental result.

Endogenous control
The signal obtained from the endogenous control primer and probe set will vary according to the amount of biological material present in a given sample. An early signal indicates the presence of a good yield of biological material. A late signal suggests that little biological material is present in the sample.